Strain Report - Rat Genome Database

Send us a Message



Submit Data |  Help |  Video Tutorials |  News |  Publications |  Download |  REST API |  Citing RGD |  Contact   
Pathways

Strain: OLETF

Symbol: OLETF
Strain: OLETF
Full Name: Otsuka Long-Evans Tokushima fatty
RGD ID: 61014
Citation ID: RRID:RGD_61014
Ontology ID: RS:0000284
Type: inbred
Source: Otsuka Research Institute, Tokushima, Japan
Origin: Developed by Kazuya Kawano, Otsuka Pharmaceutical Co., Tokushima, Japan from Long-Evans outbred stock in 1982. A rat with spontaneous polyurea, polyphagia and polydipsia was found in a colony of outbred Long Evans rats purchased from Charles River in 1982. Selective breeding for diabetes with brother x sister mating was subsequently started at the Tokushima Research Institute, Otsuka Pharmaceutical Co., Japan to develop this strain Otsuka Long-Evans Tokushima fatty (OLETF). A deletion of 6847 bases in length in the Cckar gene of the OLETF was identified compared to the wild type gene of the LETO gene sequence'
Genetic Markers: a,B,C,h
Coat Color: Black hooded
Inbred Generations: F46(Otk, 1996)
Last Known Status: Unknown

Substrains
OLETF/Got





Disease Annotations     Click to see Annotation Detail View


References

References - curated
# Reference Title Reference Citation
1. Inbred Strains Festing, MFW, Inbred Strains, The Laboratory Rat, 1979, Baker HK, Lindsey JR, Weisbroth SH, 55-72, Academic Press
2. Update to previous Strain Data Festing, MFW, Personal Communication Update, Feb-2000
3. Altered taste sensitivity in obese, prediabetic OLETF rats lacking CCK-1 receptors. Hajnal A, etal., Am J Physiol Regul Integr Comp Physiol. 2005 Dec;289(6):R1675-86. Epub 2005 Aug 4.
4. Increased lymphatic lipid transport in genetically diabetic obese rats. Hayashi H, etal., Am J Physiol Gastrointest Liver Physiol 2002 Jan;282(1):G69-76.
5. A diabetogenic gene, ODB2, identified on chromosome 14 of the OLETF rat and its synergistic action with ODB1. Hirashima T, etal., Biochem Biophys Res Commun 1996 Jul 16;224(2):420-5.
6. Role of ANG II in coronary capillary angiogenesis at the insulin-resistant stage of a NIDDM rat model. Jesmin S, etal., Am J Physiol Heart Circ Physiol 2002 Oct;283(4):H1387-97.
7. α-lipoic acid prevents non-alcoholic fatty liver disease in OLETF rats. Jung TS, etal., Liver Int. 2012 Nov;32(10):1565-73. doi: 10.1111/j.1478-3231.2012.02857.x. Epub 2012 Aug 3.
8. Genetic dissection of "OLETF", a rat model for non-insulin-dependent diabetes mellitus. Kanemoto N, etal., Mamm Genome 1998 Jun;9(6):419-25
9. OLETF (Otsuka Long-Evans Tokushima Fatty) rat: a new NIDDM rat strain. Kawano K, etal., Diabetes Res Clin Pract. 1994 Oct;24 Suppl:S317-20. doi: 10.1016/0168-8227(94)90269-0.
10. CS-886, a new angiotensin II type 1 receptor antagonist, ameliorates glomerular anionic site loss and prevents progression of diabetic nephropathy in Otsuka Long-Evans Tokushima fatty rats. Koga K, etal., Mol Med. 2002 Oct;8(10):591-9.
11. Examination of OLETF-derived non-insulin-dependent diabetes mellitus QTL by construction of a series of congenic rats. Kose H, etal., Mamm Genome 2002 Oct;13(10):558-62.
12. Rosiglitazone Elicits an Adiponectin-Mediated Insulin-Sensitizing Action at the Adipose Tissue-Liver Axis in Otsuka Long-Evans Tokushima Fatty Rats. Li J, etal., J Diabetes Res. 2018 Aug 27;2018:4627842. doi: 10.1155/2018/4627842. eCollection 2018.
13. Hyperphagia and obesity in OLETF rats lacking CCK-1 receptors. Moran TH and Bi S, Philos Trans R Soc Lond B Biol Sci. 2006 Jul 29;361(1471):1211-8.
14. Mining the quantitative trait loci associated with oral glucose tolerance in the OLETF rat. Nakaya A, etal., Pac Symp Biocomput 2000;:367-79.
15. Absence of the cholecystokinin-A receptor deteriorates homeostasis of body temperature in response to changes in ambient temperature. Nomoto S, etal., Am J Physiol Regul Integr Comp Physiol. 2004 Sep;287(3):R556-61. Epub 2004 Jun 3.
16. Identification of possible quantitative trait loci responsible for hyperglycaemia after 70% pancreatectomy using a spontaneously diabetogenic rat. Ogino T, etal., Genet Res 1999 Feb;73(1):29-36.
17. Genetic evidence for obesity loci involved in the regulation of body fat distribution in obese type 2 diabetes rat, OLETF. Ogino T, etal., Genomics 2000 Nov 15;70(1):19-25.
18. Serum leptin concentration is linked to chromosomes 2 and 6 in the OLETF rat, an animal model of type 2 diabetes with mild obesity. Ogino T, etal., Mamm Genome 2003 Dec;14(12):839-44.
19. Genetic determinants of plasma triglyceride levels in (OLETF x BN) x OLETF backcross rats. Okuno S, etal., Genomics 1999 Dec 15;62(3):350-5.
20. RGD Strain RSO annotation pipeline RGD Automated Pipelines
21. Simultaneous angiotensin receptor blockade and glucagon-like peptide-1 receptor activation ameliorate albuminuria in obese insulin-resistant rats. Rodriguez R, etal., Clin Exp Pharmacol Physiol. 2020 Mar;47(3):422-431. doi: 10.1111/1440-1681.13206. Epub 2019 Dec 5.
22. Hyperglycemia in diabetic rats reduces the glutathione content in the aortic tissue. Tachi Y, etal., Life Sci 2001 Jul 20;69(9):1039-47.
23. Disrupted cholecystokinin type-A receptor (CCKAR) gene in OLETF rats. Takiguchi S, etal., Gene 1997 Sep 15;197(1-2):169-75.
24. Detection of a quantitative trait locus for intramuscular fat accumulation using the OLETF rat. Tanomura H, etal., J Vet Med Sci 2002 Jan;64(1):45-50.
25. Mutated G-protein-coupled receptor GPR10 is responsible for the hyperphagia/dyslipidaemia/obesity locus of Dmo1 in the OLETF rat. Watanabe TK, etal., Clin Exp Pharmacol Physiol. 2005 May-Jun;32(5-6):355-66.
26. Genetic dissection of "OLETF," a rat model for non-insulin-dependent diabetes mellitus: quantitative trait locus analysis of (OLETF x BN) x OLETF. Watanabe TK, etal., Genomics 1999 Jun 15;58(3):233-9.
27. Mapping and characterization of quantitative trait loci for non-insulin-dependent diabetes mellitus with an improved genetic map in the Otsuka Long-Evans Tokushima fatty rat. Wei S, etal., Mamm Genome 1999 Mar;10(3):249-58

Region

Strain QTL Data
Symbol Name Trait
Bw1 Body weight QTL1 mesenteric fat pad mass   (VT:0010427)    
Bw115 Body weight QTL 115 body mass   (VT:0001259)    
Bw117 Body weight QTL 117 abdominal fat pad mass   (VT:1000711)    
Bw118 Body weight QTL 118 abdominal fat pad mass   (VT:1000711)    
Bw119 Body weight QTL 119 abdominal fat pad mass   (VT:1000711)    
Bw121 Body weight QTL 121 abdominal fat pad mass   (VT:1000711)    
Bw2 Body weight QTL2 retroperitoneal fat pad mass   (VT:0010430)    
Bw3 Body weight QTL3 mesenteric fat pad mass   (VT:0010427)    
Bw4 Body weight QTL4 retroperitoneal fat pad mass   (VT:0010430)    
Bw5 Body weight QTL5 retroperitoneal fat pad mass   (VT:0010430)    
Bw60 Body weight QTL60 retroperitoneal fat pad mass   (VT:0010430)    
Bw61 Body weight QTL61 intramuscular adipose amount   (VT:0010044)    
Niddm14 Non-insulin dependent diabetes mellitus QTL 14 blood glucose amount   (VT:0000188)    
Niddm15 Non-insulin dependent diabetes mellitus QTL 15 blood glucose amount   (VT:0000188)    
Niddm16 Non-insulin dependent diabetes mellitus QTL 16 blood glucose amount   (VT:0000188)    
Niddm17 Non-insulin dependent diabetes mellitus QTL 17 blood glucose amount   (VT:0000188)    
Niddm37 Non-insulin dependent diabetes mellitus QTL 37 blood glucose amount   (VT:0000188)    
Niddm38 Non-insulin dependent diabetes mellitus QTL 38 blood glucose amount   (VT:0000188)    
Niddm39 Non-insulin dependent diabetes mellitus QTL 39 blood glucose amount   (VT:0000188)    
Niddm40 Non-insulin dependent diabetes mellitus QTL 40 blood glucose amount   (VT:0000188)    
Niddm41 Non-insulin dependent diabetes mellitus QTL 41 blood glucose amount   (VT:0000188)    
Niddm45 Non-insulin dependent diabetes mellitus QTL 45 blood glucose amount   (VT:0000188)    
Niddm49 Non-insulin dependent diabetes mellitus QTL 49 blood glucose amount   (VT:0000188)    
Niddm50 Non-insulin dependent diabetes mellitus QTL 50 blood glucose amount   (VT:0000188)    
Scl29 Serum cholesterol level QTL 29 blood cholesterol amount   (VT:0000180)    
Slep1 Serum leptin concentration QTL 1 blood leptin amount   (VT:0005667)    
Slep2 Serum leptin concentration QTL 2 blood leptin amount   (VT:0005667)    
Stl10 Serum triglyceride level QTL 10 blood triglyceride amount   (VT:0002644)    
Stl11 Serum triglyceride level QTL 11 blood triglyceride amount   (VT:0002644)    
Stl12 Serum triglyceride level QTL 12 blood triglyceride amount   (VT:0002644)    
Stl8 Serum triglyceride level QTL 8 blood triglyceride amount   (VT:0002644)    
Stl9 Serum triglyceride level QTL 9 blood triglyceride amount   (VT:0002644)    

Additional Information

RGD Curation Notes
Note Type Note Reference
strain_characteristics Late onset of hyperglycemia, at about 18 week of age, followed by insulin deficiency, at about 65 week of age; exhibits hyperphagia, hyperlipidemia, and obesity 625533
strain_drgs_chems Treatment with candesartan (an AT1 receptor blocker) decreased vascular expressions of VEGF, HIF-1, and AGEs, and ameliorated the morphometric changes 625730
strain_life_disease Develops late onset of hyperglycemia (at about 18 weeks of age), hyperinsulinemia and mild obesity, mostly in males, that closely resembles non-insulin-dependent diabetes mellitus in humans associated with a sex-linked gene Odb-1 (Kawano et al, 1994, Hirashima et al, 1995). Treatment with insulin was effective in preventing B-cell dysfunction and morphological changes of the pancreas (Ishida et al, 1995) 1004
strain_life_disease Develops late onset of hyperglycemia (at about 18 weeks of age), hyperinsulinemia and mild obesity, mostly in males, that closely resembles non-insulin-dependent diabetes mellitus in humans associated with a sex-linked gene Odb-1 (Kawano et al, 1994, Hirashima et al, 1995). Treatment with insulin was effective in preventing B-cell dysfunction and morphological changes of the pancreas (Ishida et al, 1995) 61072
strain_life_disease Develops late onset of hyperglycemia (at about 18 weeks of age), hyperinsulinemia and mild obesity, mostly in males, that closely resembles non-insulin-dependent diabetes mellitus in humans associated with a sex-linked gene Odb-1 (Kawano et al, 1994, Hirashima et al, 1995). Treatment with insulin was effective in preventing B-cell dysfunction and morphological changes of the pancreas (Ishida et al, 1995) 634612
strain_life_disease A model for noninsulin-dependent diabetes mellitus (NIDDM). 625533
strain_life_disease Develops late onset of hyperglycemia (at about 18 weeks of age), hyperinsulinemia and mild obesity, mostly in males, that closely resembles non-insulin-dependent diabetes mellitus in humans associated with a sex-linked gene Odb-1 (Kawano et al, 1994, Hira 1004
strain_life_disease Develops late onset of hyperglycemia (at about 18 weeks of age), hyperinsulinemia and mild obesity, mostly in males, that closely resembles non-insulin-dependent diabetes mellitus in humans associated with a sex-linked gene Odb-1 (Kawano et al, 1994, Hira 61072
strain_life_disease Develops late onset of hyperglycemia (at about 18 weeks of age), hyperinsulinemia and mild obesity, mostly in males, that closely resembles non-insulin-dependent diabetes mellitus in humans associated with a sex-linked gene Odb-1 (Kawano et al, 1994, Hira 634612
strain_phys_biochem Has a selective defect in the binding of cholecystokinin-8 to its receptors on the acinar cell surfaces (Otsuki et al, 1995, Funakoshi et al, 1995). 1004
strain_phys_biochem Has a selective defect in the binding of cholecystokinin-8 to its receptors on the acinar cell surfaces (Otsuki et al, 1995, Funakoshi et al, 1995). 61072
strain_phys_biochem Has a selective defect in the binding of cholecystokinin-8 to its receptors on the acinar cell surfaces (Otsuki et al, 1995, Funakoshi et al, 1995). 634612
strain_phys_biochem Significant increase in lymphatic triglyceride (TG) transport at 18-19 weeks, but this can be prevented by food restriction, exercise training, or troglitazone treatment; biliary phosphatidylcholine concentration was higher compared to the age-matched control Long-Evans Tokushima Otsuka (LETO) rats 625533