The four-helical bundle soluble N-ethylmaleimide-sensitive fusion protein (NSF) attachment protein receptor (SNARE) complex that mediates intracellular membrane fusion events contains a highly conserved ionic layer at the center of an otherwise hydrophobic core. This layer has an undetermined function; it consists of glutamine (Q) residues in syntaxin and the two synaptosomal-associated protein of 25 kDa (SNAP-25) family helices, and an arginine (R) in vesicle-associated membrane protein (a 3Q:1R ratio). Here, we show that the ionic-layer glutamine of syntaxin is required for efficient alpha-SNAP and NSF-mediated dissociation of the complex. When this residue is mutated, the SNARE complex still binds to alpha-SNAP and NSF and is released through ATP hydrolysis by NSF, but the complex no longer dissociates into SNARE monomers. Thus, one function of the ionic layer--in particular, the glutamine of syntaxin--is to couple ATP hydrolysis by NSF to the dissociation of the fusion complex. We propose that alpha-SNAP and NSF drive conformational changes at the ionic layer through specific interactions with the syntaxin glutamine, resulting in the dissociation of the SNARE complex.