RGD Reference Report - Chrysin Ameliorates Malfunction of Retinoid Visual Cycle through Blocking Activation of AGE-RAGE-ER Stress in Glucose-Stimulated Retinal Pigment Epithelial Cells and Diabetic Eyes. - Rat Genome Database

Send us a Message



Submit Data |  Help |  Video Tutorials |  News |  Publications |  Download |  REST API |  Citing RGD |  Contact   

Chrysin Ameliorates Malfunction of Retinoid Visual Cycle through Blocking Activation of AGE-RAGE-ER Stress in Glucose-Stimulated Retinal Pigment Epithelial Cells and Diabetic Eyes.

Authors: Kang, Min-Kyung  Lee, Eun-Jung  Kim, Yun-Ho  Kim, Dong Yeon  Oh, Hyeongjoo  Kim, Soo-Il  Kang, Young-Hee 
Citation: Kang MK, etal., Nutrients. 2018 Aug 8;10(8). pii: nu10081046. doi: 10.3390/nu10081046.
RGD ID: 155631301
Pubmed: PMID:30096827   (View Abstract at PubMed)
PMCID: PMC6116048   (View Article at PubMed Central)
DOI: DOI:10.3390/nu10081046   (Journal Full-text)

Diabetes-associated visual cycle impairment has been implicated in diabetic retinopathy, and chronic hyperglycemia causes detrimental effects on visual function. Chrysin, a naturally occurring flavonoid found in various herbs, has anti-inflammatory, antioxidant, and neuroprotective properties. The goal of the current study was to identify the retinoprotective role of chrysin in maintaining robust retinoid visual cycle-related components. The in vitro study employed human retinal pigment epithelial (RPE) cells exposed to 33 mM of glucose or advanced glycation end products (AGEs) in the presence of 1⁻20 μM chrysin for three days. In the in vivo study, 10 mg/kg of chrysin was orally administrated to db/db mice. Treating chrysin reversed the glucose-induced production of vascular endothelial growth factor, insulin-like growth factor-1, and pigment epithelium-derived factor (PEDF) in RPE cells. The outer nuclear layer thickness of chrysin-exposed retina was enhanced. The oral gavage of chrysin augmented the levels of the visual cycle enzymes of RPE65, lecithin retinol acyltransferase (LRAT), retinol dehydrogenase 5 (RDH5), and rhodopsin diminished in db/db mouse retina. The diabetic tissue levels of the retinoid binding proteins and the receptor of the cellular retinol-binding protein, cellular retinaldehyde-binding protein-1, interphotoreceptor retinoid-binding protein and stimulated by retinoic acid 6 were restored to those of normal mouse retina. The presence of chrysin demoted AGE secretion and AGE receptor (RAGE) induction in glucose-exposed RPE cells and diabetic eyes. Chrysin inhibited the reduction of PEDF, RPE 65, LRAT, and RDH5 in 100 μg/mL of AGE-bovine serum albumin-exposed RPE cells. The treatment of RPE cells with chrysin reduced the activation of endoplasmic reticulum (ER) stress. Chrysin inhibited the impairment of the retinoid visual cycle through blocking ER stress via the AGE-RAGE activation in glucose-stimulated RPE cells and diabetic eyes. This is the first study demonstrating the protective effects of chrysin on the diabetes-associated malfunctioned visual cycle.



RGD Manual Disease Annotations    Click to see Annotation Detail View

  
Object SymbolSpeciesTermQualifierEvidenceWithNotesSourceOriginal Reference(s)
STRA6Humandiabetic retinopathy treatmentISOStra6 (Mus musculus)associated with type 2 diabetes mellitusRGD 
Stra6Ratdiabetic retinopathy treatmentISOStra6 (Mus musculus)associated with type 2 diabetes mellitusRGD 
Stra6Mousediabetic retinopathy treatmentIEP associated with type 2 diabetes mellitusRGD 

Objects Annotated

Genes (Rattus norvegicus)
Stra6  (signaling receptor and transporter of retinol STRA6)

Genes (Mus musculus)
Stra6  (stimulated by retinoic acid gene 6)

Genes (Homo sapiens)
STRA6  (signaling receptor and transporter of retinol STRA6)


Additional Information