We identify a chaperone complex composed of (1) the synaptic vesicle cysteine string protein (CSP), thought to function in neurotransmitter release, (2) the ubiquitous heat-shock protein cognate Hsc70, and (3) the SGT protein containing three tandem tetratricopeptide repeats. These three proteins interact with each other to form a stable trimeric complex that is located on the synaptic vesicle surface, and is disrupted in CSP knockout mice. The CSP/SGT/Hsc70 complex functions as an ATP-dependent chaperone that reactivates a denatured substrate. SGT overexpression in cultured neurons inhibits neurotransmitter release, suggesting that the CSP/SGT/Hsc70 complex is important for maintenance of a normal synapse. Taken together, our results identify a novel trimeric complex that functions as a synapse-specific chaperone machine.