Mir155 (microRNA 155) - Rat Genome Database

Send us a Message



Submit Data |  Help |  Video Tutorials |  News |  Publications |  Download |  REST API |  Citing RGD |  Contact   
Gene: Mir155 (microRNA 155) Rattus norvegicus
Analyze
Symbol: Mir155
Name: microRNA 155
RGD ID: 7489038
Description: Predicted to enable mRNA 3'-UTR binding activity and mRNA base-pairing translational repressor activity. Predicted to act upstream of or within several processes, including cellular response to cytokine stimulus; cellular response to dexamethasone stimulus; and regulation of gene expression. Used to study rheumatic heart disease. Biomarker of Parkinson's disease; alcoholic hepatitis; allergic contact dermatitis; atrophic gastritis; and transient cerebral ischemia. Human ortholog(s) of this gene implicated in colon adenocarcinoma; hepatocellular carcinoma; oropharynx cancer; and type 1 diabetes mellitus. Orthologous to human MIR155 (microRNA 155); INTERACTS WITH 2,5-hexanedione; 2-acetamidofluorene; atrazine.
Type: ncrna (Ensembl: miRNA)
RefSeq Status: PROVISIONAL
Previously known as: rno-mir-155
RGD Orthologs
Human
Mouse
Dog
Pig
Alliance Orthologs
More Info more info ...
Latest Assembly: mRatBN7.2 - mRatBN7.2 Assembly
Position:
Rat AssemblyChrPosition (strand)SourceGenome Browsers
JBrowseNCBIUCSCEnsembl
GRCr81137,261,114 - 37,261,178 (+)NCBIGRCr8
mRatBN7.21123,774,654 - 23,774,718 (+)NCBImRatBN7.2mRatBN7.2
mRatBN7.2 Ensembl1123,774,654 - 23,774,718 (+)EnsemblmRatBN7.2 Ensembl
UTH_Rnor_SHR_Utx1132,481,023 - 32,481,087 (+)NCBIRnor_SHRUTH_Rnor_SHR_Utx
UTH_Rnor_SHRSP_BbbUtx_1.01125,181,422 - 25,181,486 (+)NCBIRnor_SHRSPUTH_Rnor_SHRSP_BbbUtx_1.0
UTH_Rnor_WKY_Bbb_1.01124,370,128 - 24,370,192 (+)NCBIRnor_WKYUTH_Rnor_WKY_Bbb_1.0
Rnor_6.01124,176,603 - 24,176,667 (+)NCBIRnor6.0Rnor_6.0rn6Rnor6.0
Rnor_6.0 Ensembl1124,176,603 - 24,176,667 (+)EnsemblRnor6.0rn6Rnor6.0
Celera1123,614,233 - 23,614,297 (+)NCBICelera
Cytogenetic Map11q11NCBI
JBrowse: View Region in Genome Browser (JBrowse)
Model


Disease Annotations     Click to see Annotation Detail View
Acute Experimental Pancreatitis  (ISO)
Acute Lung Injury  (IMP,ISO)
acute myeloid leukemia  (ISO)
acute myocardial infarction  (ISO)
acute pancreatitis  (ISO)
adult respiratory distress syndrome  (ISO)
Albuminuria  (ISO)
alcoholic hepatitis  (IEP,ISO)
Alcoholic Liver Diseases  (ISO)
allergic contact dermatitis  (IEP)
Alzheimer's disease  (ISO)
Alzheimer's Disease, Early-Onset, with Cerebral Amyloid Angiopathy  (ISO)
Angina Pectoris  (ISO)
Arsenic Poisoning  (ISO)
atherosclerosis  (ISO)
atrophic gastritis  (IEP)
autoimmune hepatitis  (ISO)
Behcet's disease  (ISO)
biliary atresia  (ISO)
Carcinoid Tumor  (ISO)
Chemical and Drug Induced Liver Injury  (ISO)
cholangiocarcinoma  (ISO)
cholera  (ISO)
Chronic Hepatitis B  (ISO)
Chronic Hepatitis C  (ISO)
chronic lymphocytic leukemia  (ISO)
Chronic Periodontitis  (ISO)
colon adenocarcinoma  (ISO)
colon cancer  (ISO)
Colonic Polyps  (ISO)
colorectal cancer  (ISO)
coronary artery disease  (ISO)
Crohn's disease  (ISO)
cystic fibrosis  (ISO)
Down syndrome  (ISO)
encephalomyelitis  (ISO)
Endotoxemia  (ISO)
Endotoxin Hyporesponsiveness  (ISO)
esophageal cancer  (ISO)
Experimental Colitis  (IMP,ISO)
Experimental Mammary Neoplasms  (ISO)
familial adenomatous polyposis  (ISO)
Fibrosis  (ISO)
Flaviviridae Infections  (ISO)
gallbladder carcinoma  (ISO)
gastritis  (ISO)
head and neck squamous cell carcinoma  (ISO)
Helicobacter Infections  (ISO)
hepatitis B  (ISO)
hepatocellular carcinoma  (ISO)
hyperglycemia  (ISO)
Insulin Resistance  (ISO)
Intervertebral Disc Disease  (ISO)
Intestinal Reperfusion Injury  (ISO)
liposarcoma  (ISO)
liver cirrhosis  (ISO)
Liver Injury  (ISO)
Liver Metastasis  (ISO)
Liver Reperfusion Injury  (ISO)
Lung Neoplasms  (ISO)
Lymphatic Metastasis  (ISO)
lymphoma  (ISS)
metabolic dysfunction and alcohol associated liver disease  (ISO)
metabolic dysfunction-associated steatotic liver disease  (ISO)
Microsatellite Instability  (ISO)
multiple myeloma  (ISO)
myocardial infarction  (ISO)
Neoplasm Invasiveness  (ISO)
Neoplasm Metastasis  (ISO)
Neoplastic Cell Transformation  (ISO)
Neurodevelopmental Disorders  (ISO)
obesity  (ISO)
Oral Lichen Planus  (ISO)
oral squamous cell carcinoma  (ISO)
oropharynx cancer  (ISO)
pancreatic carcinoma  (ISO)
pancreatic ductal adenocarcinoma  (ISO)
pancreatitis  (ISO)
Parkinson's disease  (IEP)
Pediatric Crohn's Disease  (ISO)
peritonitis  (ISO)
pre-eclampsia  (ISO)
primary sclerosing cholangitis  (ISO)
prostate cancer  (ISO)
rheumatic heart disease  (IMP)
salivary gland adenoid cystic carcinoma  (ISO)
Sepsis  (ISO)
Septic Peritonitis  (ISO)
severe pre-eclampsia  (ISO)
stomach cancer  (ISO)
tongue cancer  (ISO)
toxic shock syndrome  (ISO)
transient cerebral ischemia  (IEP)
traumatic brain injury  (ISO)
type 1 diabetes mellitus  (ISO)
type 2 diabetes mellitus  (ISO)
ulcerative colitis  (ISO)
visceral leishmaniasis  (ISO)

Gene-Chemical Interaction Annotations     Click to see Annotation Detail View
17beta-estradiol  (ISO)
2,4,6-trinitrobenzenesulfonic acid  (ISO)
2,5-hexanedione  (EXP)
2-acetamidofluorene  (EXP)
3-chloropropane-1,2-diol  (ISO)
3-isobutyl-1-methyl-7H-xanthine  (ISO)
4-(N-nitrosomethylamino)-1-(3-pyridyl)butan-1-one  (ISO)
all-trans-retinoic acid  (ISO)
arsane  (ISO)
arsenic atom  (ISO)
arsenite(3-)  (ISO)
arsenous acid  (ISO)
atrazine  (EXP)
Bandrowski's base  (ISO)
benzo[a]pyrene diol epoxide I  (ISO)
bis(2-chloroethyl) sulfide  (ISO)
bisphenol A  (ISO)
buta-1,3-diene  (ISO)
cadmium dichloride  (ISO)
cannabidiol  (ISO)
carbamazepine  (ISO)
carbon atom  (ISO)
carboplatin  (ISO)
chloroquine  (ISO)
choline  (ISO)
cisplatin  (EXP,ISO)
clofibrate  (EXP)
clopidogrel  (ISO)
cypermethrin  (ISO)
Deoxycorticosterone acetate  (EXP)
desferrioxamine B  (ISO)
dexamethasone  (ISO)
diarsenic trioxide  (ISO)
doxorubicin  (ISO)
elemental carbon  (ISO)
fluoranthene  (ISO)
folic acid  (ISO)
galaxolide  (ISO)
gentamycin  (EXP)
hydrogen peroxide  (ISO)
hydroquinone  (ISO)
isoprenaline  (EXP)
isorhamnetin  (ISO)
L-methionine  (ISO)
lamotrigine  (ISO)
lipopolysaccharide  (ISO)
lithium chloride  (EXP)
mechlorethamine  (ISO)
metformin  (EXP)
methamidophos  (ISO)
methanol  (ISO)
morphine  (ISO)
Octicizer  (ISO)
ozone  (ISO)
paracetamol  (EXP,ISO)
perfluorooctane-1-sulfonic acid  (EXP,ISO)
phenobarbital  (EXP)
phorbol 13-acetate 12-myristate  (ISO)
piperacillin  (ISO)
poly(I:C)  (ISO)
progesterone  (ISO)
propofol  (EXP)
puromycin  (EXP)
quercetin  (ISO)
resveratrol  (ISO)
silver atom  (ISO)
silver(0)  (ISO)
Sinomenine  (ISO)
sodium arsenite  (ISO)
sodium fluoride  (ISO)
streptozocin  (ISO)
sulfamethoxazole  (ISO)
sulfur dioxide  (ISO)
T-2 toxin  (ISO)
tert-butyl hydroperoxide  (ISO)
tetrachloromethane  (EXP,ISO)
trichostatin A  (ISO)
zinc atom  (ISO)
zinc(0)  (ISO)

References

References - curated
# Reference Title Reference Citation
1. Evaluation of the miRNA-146a and miRNA-155 Expression Levels in Patients with Oral Lichen Planus. Ahmadi-Motamayel F, etal., Iran J Immunol. 2017 Dec;14(4):316-324. doi: IJIv14i4A6.
2. Rab27-Dependent Exosome Production Inhibits Chronic Inflammation and Enables Acute Responses to Inflammatory Stimuli. Alexander M, etal., J Immunol. 2017 Nov 15;199(10):3559-3570. doi: 10.4049/jimmunol.1700904. Epub 2017 Oct 4.
3. Long non-coding RNA CCAT1 is overexpressed in oral squamous cell carcinomas and predicts poor prognosis. Arunkumar G, etal., Biomed Rep. 2017 Apr;6(4):455-462. doi: 10.3892/br.2017.876. Epub 2017 Mar 17.
4. Polymorphisms in genes encoding miR-155 and miR-146a are associated with protection to type 1 diabetes mellitus. Assmann TS, etal., Acta Diabetol. 2017 May;54(5):433-441. doi: 10.1007/s00592-016-0961-y. Epub 2017 Jan 19.
5. Dysregulated Autophagy and Lysosome Function Are Linked to Exosome Production by Micro-RNA 155 in Alcoholic Liver Disease. Babuta M, etal., Hepatology. 2019 Dec;70(6):2123-2141. doi: 10.1002/hep.30766. Epub 2019 Jun 24.
6. The pro-inflammatory effects of miR-155 promote liver fibrosis and alcohol-induced steatohepatitis. Bala S, etal., J Hepatol. 2016 Jun;64(6):1378-87. doi: 10.1016/j.jhep.2016.01.035. Epub 2016 Feb 8.
7. MicroRNA-155, -185 and -193b as biomarkers in human papillomavirus positive and negative tonsillar and base of tongue squamous cell carcinoma. Bersani C, etal., Oral Oncol. 2018 Jul;82:8-16. doi: 10.1016/j.oraloncology.2018.04.021. Epub 2018 May 4.
8. MicroRNA-155 potentiates the inflammatory response in hypothermia by suppressing IL-10 production. Billeter AT, etal., FASEB J. 2014 Dec;28(12):5322-36. doi: 10.1096/fj.14-258335. Epub 2014 Sep 17.
9. Induction of immunomodulatory miR-146a and miR-155 in small intestinal epithelium of Vibrio cholerae infected patients at acute stage of cholera. Bitar A, etal., PLoS One. 2017 Mar 20;12(3):e0173817. doi: 10.1371/journal.pone.0173817. eCollection 2017.
10. Expression of microRNA-155 in inflammatory cells modulates liver injury. Blaya D, etal., Hepatology. 2018 Aug;68(2):691-706. doi: 10.1002/hep.29833. Epub 2018 May 2.
11. Up-regulated expression of miR-155 in human colonic cancer. Cao H, etal., J Cancer Res Ther. 2018 Apr-Jun;14(3):604-607. doi: 10.4103/0973-1482.175432.
12. MiR-155 controls follicular Treg cell-mediated humoral autoimmune intestinal injury by inhibiting CTLA-4 expression. Chao G, etal., Int Immunopharmacol. 2019 Jun;71:267-276. doi: 10.1016/j.intimp.2019.03.009. Epub 2019 Mar 28.
13. Inhibition of miR‑155‑5p attenuates the valvular damage induced by rheumatic heart disease. Chen A, etal., Int J Mol Med. 2020 Feb;45(2):429-440. doi: 10.3892/ijmm.2019.4420. Epub 2019 Dec 6.
14. NF-kB-regulated exosomal miR-155 promotes the inflammation associated with arsenite carcinogenesis. Chen C, etal., Cancer Lett. 2017 Mar 1;388:21-33. doi: 10.1016/j.canlet.2016.11.027. Epub 2016 Nov 30.
15. Long Non-Coding RNA CCAT1 Acts as a Competing Endogenous RNA to Regulate Cell Growth and Differentiation in Acute Myeloid Leukemia. Chen L, etal., Mol Cells. 2016 Apr 30;39(4):330-6. doi: 10.14348/molcells.2016.2308. Epub 2016 Feb 26.
16. Overexpression of IL-9 induced by STAT3 phosphorylation is mediated by miR-155 and miR-21 in chronic lymphocytic leukemia. Chen N, etal., Oncol Rep. 2018 Jun;39(6):3064-3072. doi: 10.3892/or.2018.6367. Epub 2018 Apr 12.
17. Differential Expression of MicroRNAs in Hepatitis C Virus-Mediated Liver Disease Between African Americans and Caucasians: Implications for Racial Health Disparities. Devhare PB, etal., Gene Expr. 2017 Feb 10;17(2):89-98. doi: 10.3727/105221616X693594. Epub 2016 Oct 19.
18. MicroRNA-155 enhances T cell trafficking and antiviral effector function in a model of coronavirus-induced neurologic disease. Dickey LL, etal., J Neuroinflammation. 2016 Sep 7;13(1):240. doi: 10.1186/s12974-016-0699-z.
19. Circulating microRNA-155 is associated with insulin resistance in chronic hepatitis C patients. El Samaloty NM, etal., Arab J Gastroenterol. 2019 Mar;20(1):1-7. doi: 10.1016/j.ajg.2019.01.011. Epub 2019 Mar 7.
20. Increased Levels of miR-155 are Related to Higher T-Cell Activation in the Peripheral Blood of Patients with Chronic Hepatitis B. Fang J, etal., Genet Test Mol Biomarkers. 2019 Feb;23(2):118-123. doi: 10.1089/gtmb.2018.0092.
21. MicroRNA Profiling and Target Genes Related to Metastasis of Salivary Adenoid Cystic Carcinoma. Feng X, etal., Anticancer Res. 2017 Jul;37(7):3473-3481. doi: 10.21873/anticanres.11715.
22. Deregulation of MicroRNAs in Gastric Lymphomagenesis Induced in the d3Tx Mouse Model of Helicobacter pylori Infection. Floch P, etal., Front Cell Infect Microbiol. 2017 May 16;7:185. doi: 10.3389/fcimb.2017.00185. eCollection 2017.
23. MiR-210 and miR-155 as potential diagnostic markers for pre-eclampsia pregnancies. Gan L, etal., Medicine (Baltimore). 2017 Jul;96(28):e7515. doi: 10.1097/MD.0000000000007515.
24. MicroRNA-155 increases colon cancer chemoresistance to cisplatin by targeting forkhead box O3. Gao Y, etal., Oncol Lett. 2018 Apr;15(4):4781-4788. doi: 10.3892/ol.2018.7976. Epub 2018 Feb 7.
25. Early diagnostic role of PSA combined miR-155 detection in prostate cancer. Guo T, etal., Eur Rev Med Pharmacol Sci. 2018 Mar;22(6):1615-1621. doi: 10.26355/eurrev_201803_14568.
26. MicroRNA-31 and MicroRNA-155 Are Overexpressed in Ulcerative Colitis and Regulate IL-13 Signaling by Targeting Interleukin 13 Receptor α-1. Gwiggner M, etal., Genes (Basel). 2018 Feb 13;9(2). pii: genes9020085. doi: 10.3390/genes9020085.
27. Induction of miR-155 after Brain Injury Promotes Type 1 Interferon and has a Neuroprotective Effect. Harrison EB, etal., Front Mol Neurosci. 2017 Jul 28;10:228. doi: 10.3389/fnmol.2017.00228. eCollection 2017.
28. MiR-200b and miR-155 as predictive biomarkers for the efficacy of chemoradiation in locally advanced head and neck squamous cell carcinoma. Hess AK, etal., Eur J Cancer. 2017 May;77:3-12. doi: 10.1016/j.ejca.2017.02.018. Epub 2017 Mar 26.
29. Effect of microRNA-155 on the interferon-gamma signaling pathway in biliary atresia. Hsu YA, etal., Chin J Physiol. 2016 Dec 31;59(6):315-322. doi: 10.4077/CJP.2016.BAE419.
30. MicroRNA-155 inhibition attenuates endoplasmic reticulum stress-induced cardiomyocyte apoptosis following myocardial infarction via reducing macrophage inflammation. Hu J, etal., Eur J Pharmacol. 2019 Aug 15;857:172449. doi: 10.1016/j.ejphar.2019.172449. Epub 2019 Jun 14.
31. MiR-155 and its functional variant rs767649 contribute to the susceptibility and survival of hepatocellular carcinoma. Ji J, etal., Oncotarget. 2016 Sep 13;7(37):60303-60309. doi: 10.18632/oncotarget.11206.
32. MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Jiang S, etal., Cancer Res. 2010 Apr 15;70(8):3119-27. doi: 10.1158/0008-5472.CAN-09-4250. Epub 2010 Mar 30.
33. MicroRNA-155 as a proinflammatory regulator via SHIP-1 down-regulation in acute gouty arthritis. Jin HM, etal., Arthritis Res Ther. 2014 Apr 7;16(2):R88. doi: 10.1186/ar4531.
34. [In vivo imaging of breast tumors by a 99mTc radiolabeled probe targeting microRNA-155 in mice models]. Kang L, etal., Beijing Da Xue Xue Bao Yi Xue Ban. 2018 Apr 18;50(2):326-330.
35. Assessing the clinical value of microRNAs in formalin-fixed paraffin-embedded liposarcoma tissues: Overexpressed miR-155 is an indicator of poor prognosis. Kapodistrias N, etal., Oncotarget. 2017 Jan 24;8(4):6896-6913. doi: 10.18632/oncotarget.14320.
36. Potential Oncogenic Role and Prognostic Implication of MicroRNA-155-5p in Oral Squamous Cell Carcinoma. Kim H, etal., Anticancer Res. 2018 Sep;38(9):5193-5200. doi: 10.21873/anticanres.12842.
37. Determination of mir-155 and mir-146a expression rates and its association with expression level of TNF-α and CTLA4 genes in patients with Behcet's disease. Kolahi S, etal., Immunol Lett. 2018 Dec;204:55-59. doi: 10.1016/j.imlet.2018.10.012. Epub 2018 Oct 23.
38. Insights into epigenetic regulation of microRNA-155 expression in multiple myeloma. Krzeminski P, etal., Biochim Biophys Acta. 2015 Mar;1849(3):353-66. doi: 10.1016/j.bbagrm.2014.12.002. Epub 2014 Dec 11.
39. [Value of serum miR-155-5p and miR-133a-3p expression for the diagnosis and prognosis evaluation of sepsis]. Lan C, etal., Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2016 Aug;28(8):694-8. doi: 10.3760/cma.j.issn.2095-4352.2016.08.005.
40. The tumor suppressor role of miR-155-5p in gastric cancer. Li S, etal., Oncol Lett. 2018 Aug;16(2):2709-2714. doi: 10.3892/ol.2018.8932. Epub 2018 Jun 8.
41. Targeted delivery of anti-miR-155 by functionalized mesoporous silica nanoparticles for colorectal cancer therapy. Li Y, etal., Int J Nanomedicine. 2018 Mar 1;13:1241-1256. doi: 10.2147/IJN.S158290. eCollection 2018.
42. MicroRNA-155 Deficiency in Kupffer Cells Ameliorates Liver Ischemia-Reperfusion Injury in Mice. Li Y, etal., Transplantation. 2017 Jul;101(7):1600-1608. doi: 10.1097/TP.0000000000001765.
43. Rituximab May Cause Increased Hepatitis C Virus Viremia in Rheumatoid Arthritis Patients Through Declining Exosomal MicroRNA-155. Liao TL, etal., Arthritis Rheumatol. 2018 Aug;70(8):1209-1219. doi: 10.1002/art.40495. Epub 2018 Jun 27.
44. MiR-155 Enhances Insulin Sensitivity by Coordinated Regulation of Multiple Genes in Mice. Lin X, etal., PLoS Genet. 2016 Oct 6;12(10):e1006308. doi: 10.1371/journal.pgen.1006308. eCollection 2016 Oct.
45. microRNA-155 Modulates Hepatic Stellate Cell Proliferation, Apoptosis, and Cell Cycle Progression in Rats With Alcoholic Hepatitis via the MAPK Signaling Pathway Through Targeting SOCS1. Liu D, etal., Front Pharmacol. 2020 Apr 7;11:270. doi: 10.3389/fphar.2020.00270. eCollection 2020.
46. MiR-155 Alleviates Septic Lung Injury by Inducing Autophagy Via Inhibition of Transforming Growth Factor-β-Activated Binding Protein 2. Liu F, etal., Shock. 2017 Jul;48(1):61-68. doi: 10.1097/SHK.0000000000000839.
47. The miR-124-p63 feedback loop modulates colorectal cancer growth. Liu K, etal., Oncotarget. 2017 Apr 25;8(17):29101-29115. doi: 10.18632/oncotarget.16248.
48. miR-155-5p is Negatively Associated with Acute Pancreatitis and Inversely Regulates Pancreatic Acinar Cell Progression by Targeting Rela and Traf3. Liu S, etal., Cell Physiol Biochem. 2018;51(4):1584-1599. doi: 10.1159/000495648. Epub 2018 Nov 29.
49. MiR-155 inhibition ameliorates 2, 4, 6-Trinitrobenzenesulfonic acid (TNBS)-induced experimental colitis in rat via influencing the differentiation of Th17 cells by Jarid2. Liu Y, etal., Int Immunopharmacol. 2018 Nov;64:401-410. doi: 10.1016/j.intimp.2018.09.007. Epub 2018 Sep 22.
50. Serum levels of miR-29, miR-122, miR-155 and miR-192 are elevated in patients with cholangiocarcinoma. Loosen SH, etal., PLoS One. 2019 Jan 17;14(1):e0210944. doi: 10.1371/journal.pone.0210944. eCollection 2019.
51. MicroRNA-155 promotes the pathogenesis of experimental colitis by repressing SHIP-1 expression. Lu ZJ, etal., World J Gastroenterol. 2017 Feb 14;23(6):976-985. doi: 10.3748/wjg.v23.i6.976.
52. MicroRNA-155 is upregulated in ascites in patients with spontaneous bacterial peritonitis. Lutz P, etal., Sci Rep. 2017 Jan 11;7:40556. doi: 10.1038/srep40556.
53. Anti-inflammatory effects of curcumin are associated with down regulating microRNA-155 in LPS-treated macrophages and mice. Ma F, etal., Pharm Biol. 2017 Dec;55(1):1263-1273. doi: 10.1080/13880209.2017.1297838.
54. Decreased Serum Level of miR-155 is Associated with Obesity and its Related Metabolic Traits. Mahdavi R, etal., Clin Lab. 2018 Jan 1;64(1):77-84. doi: 10.7754/Clin.Lab.2017.170618.
55. MicroRNA-155 Controls Exosome Synthesis and Promotes Gemcitabine Resistance in Pancreatic Ductal Adenocarcinoma. Mikamori M, etal., Sci Rep. 2017 Feb 15;7:42339. doi: 10.1038/srep42339.
56. miR-146a, miR-155, miR-370, and miR-708 Are CFTR-Dependent, Predicted FOXO1 Regulators and Change at Onset of CFRDs. Montanini L, etal., J Clin Endocrinol Metab. 2016 Dec;101(12):4955-4963. doi: 10.1210/jc.2016-2431. Epub 2016 Sep 30.
57. MicroRNA-155 regulates the Th17 immune response by targeting Ets-1 in Behçet's disease. Na SY, etal., Clin Exp Rheumatol. 2016 Sep-Oct;34(6 Suppl 102):S56-S63. Epub 2016 Apr 18.
58. MicroRNA-155 is essential for the T cell-mediated control of Helicobacter pylori infection and for the induction of chronic Gastritis and Colitis. Oertli M, etal., J Immunol. 2011 Oct 1;187(7):3578-86. doi: 10.4049/jimmunol.1101772. Epub 2011 Aug 31.
59. miR-155 Is Downregulated in Familial Adenomatous Polyposis and Modulates WNT Signaling by Targeting AXIN1 and TCF4. Prossomariti A, etal., Mol Cancer Res. 2018 Dec;16(12):1965-1976. doi: 10.1158/1541-7786.MCR-18-0115. Epub 2018 Aug 2.
60. MicroRNA-146a and microRNA-155 as novel crevicular fluid biomarkers for periodontitis in non-diabetic and type 2 diabetic patients. Radović N, etal., J Clin Periodontol. 2018 Jun;45(6):663-671. doi: 10.1111/jcpe.12888. Epub 2018 May 15.
61. ClinVar Automated Import and Annotation Pipeline RGD automated import pipeline for ClinVar variants, variant-to-disease annotations and gene-to-disease annotations
62. Data Import for Chemical-Gene Interactions RGD automated import pipeline for gene-chemical interactions
63. Differential intestinal anti-inflammatory effects of Lactobacillus fermentum and Lactobacillus salivarius in DSS mouse colitis: impact on microRNAs expression and microbiota composition. Rodríguez-Nogales A, etal., Mol Nutr Food Res. 2017 Nov;61(11). doi: 10.1002/mnfr.201700144. Epub 2017 Aug 29.
64. Protein Deimination Signatures in Plasma and Plasma-EVs and Protein Deimination in the Brain Vasculature in a Rat Model of Pre-Motor Parkinson's Disease. Sancandi M, etal., Int J Mol Sci. 2020 Apr 15;21(8). pii: ijms21082743. doi: 10.3390/ijms21082743.
65. Role of 3-Acetyl-11-Keto-Beta-Boswellic Acid in Counteracting LPS-Induced Neuroinflammation via Modulation of miRNA-155. Sayed AS, etal., Mol Neurobiol. 2018 Jul;55(7):5798-5808. doi: 10.1007/s12035-017-0801-2. Epub 2017 Oct 27.
66. Circulating and Fecal microRNAs as Biomarkers for Inflammatory Bowel Diseases. Schönauen K, etal., Inflamm Bowel Dis. 2018 Jun 8;24(7):1547-1557. doi: 10.1093/ibd/izy046.
67. Serum MicroRNA-122 and MicroRNA-155: Markers of Disease Progression in Hepatitis C viral infection. Sheneef A, etal., Egypt J Immunol. 2017 Jun;24(2):33-46.
68. Increased duodenal expression of miR-146a and -155 in pediatric Crohn's disease. Szűcs D, etal., World J Gastroenterol. 2016 Jul 14;22(26):6027-35. doi: 10.3748/wjg.v22.i26.6027.
69. [Protective effect of microRNA-155 antisense oligonucleotid on lipopolysaccharide-induced acute lung injury in mice]. Tang J, etal., Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2018 Aug;30(8):743-747. doi: 10.3760/cma.j.issn.2095-4352.2018.08.006.
70. Downregulation of miR-155 attenuates sepsis-induced acute lung injury by targeting SIRT1. Tuerdi B, etal., Int J Clin Exp Pathol. 2018 Sep 1;11(9):4483-4492. eCollection 2018.
71. Circulating Plasma Levels of miR-20b, miR-29b and miR-155 as Predictors of Bevacizumab Efficacy in Patients with Metastatic Colorectal Cancer. Ulivi P, etal., Int J Mol Sci. 2018 Jan 20;19(1). pii: ijms19010307. doi: 10.3390/ijms19010307.
72. MicroRNA 155 Contributes to Host Immunity against Leishmania donovani but Is Not Essential for Resolution of Infection. Varikuti S, etal., Infect Immun. 2019 Jul 23;87(8). pii: IAI.00307-19. doi: 10.1128/IAI.00307-19. Print 2019 Aug.
73. MicroRNA-155 Amplifies Nitric Oxide/cGMP Signaling and Impairs Vascular Angiotensin II Reactivity in Septic Shock. Vasques-Nóvoa F, etal., Crit Care Med. 2018 Sep;46(9):e945-e954. doi: 10.1097/CCM.0000000000003296.
74. MicroRNA-155 deletion promotes tumorigenesis in the azoxymethane-dextran sulfate sodium model of colon cancer. Velazquez KT, etal., Am J Physiol Gastrointest Liver Physiol. 2016 Mar 15;310(6):G347-58. doi: 10.1152/ajpgi.00326.2015. Epub 2016 Jan 7.
75. miR155 deficiency aggravates high-fat diet-induced adipose tissue fibrosis in male mice. Velázquez KT, etal., Physiol Rep. 2017 Sep;5(18). pii: 5/18/e13412. doi: 10.14814/phy2.13412.
76. MicroRNA-155 Deficiency Leads to Decreased Atherosclerosis, Increased White Adipose Tissue Obesity, and Non-alcoholic Fatty Liver Disease: A NOVEL MOUSE MODEL OF OBESITY PARADOX. Virtue A, etal., J Biol Chem. 2017 Jan 27;292(4):1267-1287. doi: 10.1074/jbc.M116.739839. Epub 2016 Nov 17.
77. MiRNA-155 Regulates the Th17/Treg Ratio by Targeting SOCS1 in Severe Acute Pancreatitis. Wang D, etal., Front Physiol. 2018 Jun 8;9:686. doi: 10.3389/fphys.2018.00686. eCollection 2018.
78. Decreased MiR-155 Level in the Peripheral Blood of Non-Alcoholic Fatty Liver Disease Patients may Serve as a Biomarker and may Influence LXR Activity. Wang L, etal., Cell Physiol Biochem. 2016;39(6):2239-2248. doi: 10.1159/000447917. Epub 2016 Nov 7.
79. MicroRNA Microarray-Based Identification of Involvement of miR-155 and miR-19a in Development of Oral Lichen Planus (OLP) by Modulating Th1/Th2 Balance via Targeting eNOS and Toll-Like Receptor 2 (TLR2). Wang L, etal., Med Sci Monit. 2018 May 29;24:3591-3603. doi: 10.12659/MSM.907497.
80. MicroRNA-155 inversely correlates with esophageal cancer progression through regulating tumor-associated macrophage FGF2 expression. Wang P, etal., Biochem Biophys Res Commun. 2018 Sep 5;503(2):452-458. doi: 10.1016/j.bbrc.2018.04.094. Epub 2018 Jun 30.
81. Macrophage micro-RNA-155 promotes lipopolysaccharide-induced acute lung injury in mice and rats. Wang W, etal., Am J Physiol Lung Cell Mol Physiol. 2016 Aug 1;311(2):L494-506. doi: 10.1152/ajplung.00001.2016. Epub 2016 Jul 1.
82. HBeAg induces the expression of macrophage miR-155 to accelerate liver injury via promoting production of inflammatory cytokines. Wang W, etal., Cell Mol Life Sci. 2018 Jul;75(14):2627-2641. doi: 10.1007/s00018-018-2753-8. Epub 2018 Jan 18.
83. Involvement of the Negative Feedback of IL-33 Signaling in the Anti-Inflammatory Effect of Electro-acupuncture on Allergic Contact Dermatitis via Targeting MicroRNA-155 in Mast Cells. Wang Z, etal., Inflammation. 2018 Jun;41(3):859-869. doi: 10.1007/s10753-018-0740-8.
84. Inhibition of microRNA-155 attenuates concanavalin-A-induced autoimmune hepatitis by regulating Treg/Th17 cell differentiation. Xia G, etal., Can J Physiol Pharmacol. 2018 Dec;96(12):1293-1300. doi: 10.1139/cjpp-2018-0467. Epub 2018 Oct 5.
85. MiR-155 contributes to Th17 cells differentiation in dextran sulfate sodium (DSS)-induced colitis mice via Jarid2. Xu M, etal., Biochem Biophys Res Commun. 2017 Jun 17;488(1):6-14. doi: 10.1016/j.bbrc.2017.04.143. Epub 2017 Apr 28.
86. [Circulating Serum MicroRNA as Diagnostic Biomarkers for Multiple Myeloma]. Xu YN, etal., Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2017 Apr;25(2):471-475. doi: 10.7534/j.issn.1009-2137.2017.02.029.
87. Tanshinone IIA Attenuates Atherosclerosis in Apolipoprotein E Knockout Mice Infected with Porphyromonas gingivalis. Xuan Y, etal., Inflammation. 2017 Oct;40(5):1631-1642. doi: 10.1007/s10753-017-0603-8.
88. Repression of lncRNA NEAT1 enhances the antitumor activity of CD8+T cells against hepatocellular carcinoma via regulating miR-155/Tim-3. Yan K, etal., Int J Biochem Cell Biol. 2019 May;110:1-8. doi: 10.1016/j.biocel.2019.01.019. Epub 2019 Jan 30.
89. The inhibitory effect of Gualou Guizhi Decoction on post-ischemic neuroinflammation via miR-155 in MCAO rats. Yang J, etal., Ann Palliat Med. 2021 Feb;10(2):1370-1379. doi: 10.21037/apm-20-518. Epub 2020 Oct 16.
90. Visualizing the Conversion Process of Alcohol-Induced Fatty Liver to Steatohepatitis in Vivo with a Fluorescent Nanoprobe. Yang L, etal., Anal Chem. 2017 Jun 6;89(11):6196-6201. doi: 10.1021/acs.analchem.7b01144. Epub 2017 May 17.
91. MiR-155 aggravated septic liver injury by oxidative stress-mediated ER stress and mitochondrial dysfunction via targeting Nrf-2. Yang ZB, etal., Exp Mol Pathol. 2018 Dec;105(3):387-394. doi: 10.1016/j.yexmp.2018.09.003. Epub 2018 Sep 13.
92. [Expression of microRNA-155 in inflammatory bowel disease and its clinical significance]. Ye YL, etal., Zhonghua Yi Xue Za Zhi. 2017 Dec 19;97(47):3716-3719. doi: 10.3760/cma.j.issn.0376-2491.2017.47.007.
93. Association of MicroRNA-210 and MicroRNA-155 with severity of preeclampsia. Youssef HMG and Marei ES, Pregnancy Hypertens. 2019 Jul;17:49-53. doi: 10.1016/j.preghy.2019.05.010. Epub 2019 May 10.
94. Fine-tuning the expression of microRNA-155 controls acetaminophen-induced liver inflammation. Yuan K, etal., Int Immunopharmacol. 2016 Nov;40:339-346. doi: 10.1016/j.intimp.2016.09.011. Epub 2016 Sep 24.
95. Expression of miRNA-146a, miRNA-155, IL-2, and TNF-α in inflammatory response to Helicobacter pylori infection associated with cancer progression. Zabaglia LM, etal., Ann Hum Genet. 2018 May;82(3):135-142. doi: 10.1111/ahg.12234. Epub 2017 Dec 18.
96. Decreased miR-155-5p, miR-15a, and miR-186 Expression in Gastric Cancer Is Associated with Advanced Tumor Grade and Metastasis Zare A, etal., Iran Biomed J. 2019 Sep;23(5):338-343. Epub 2019 May 19.
97. A Feedback Loop between MicroRNA 155 (miR-155), Programmed Cell Death 4, and Activation Protein 1 Modulates the Expression of miR-155 and Tumorigenesis in Tongue Cancer. Zargar S, etal., Mol Cell Biol. 2019 Mar 1;39(6). pii: MCB.00410-18. doi: 10.1128/MCB.00410-18. Print 2019 Mar 15.
98. DNA Tetrahedral Nanostructure-Based Electrochemical miRNA Biosensor for Simultaneous Detection of Multiple miRNAs in Pancreatic Carcinoma. Zeng D, etal., ACS Appl Mater Interfaces. 2017 Jul 19;9(28):24118-24125. doi: 10.1021/acsami.7b05981. Epub 2017 Jul 5.
99. Investigating the microRNA-mRNA regulatory network in acute myeloid leukemia. Zhang H, etal., Oncol Lett. 2017 Oct;14(4):3981-3988. doi: 10.3892/ol.2017.6686. Epub 2017 Jul 28.
100. Acupuncture Decreases NF-κB p65, miR-155, and miR-21 and Increases miR-146a Expression in Chronic Atrophic Gastritis Rats. Zhang J, etal., Evid Based Complement Alternat Med. 2016;2016:9404629. doi: 10.1155/2016/9404629. Epub 2016 May 18.
101. MicroRNA-155 promotes tumor growth of human hepatocellular carcinoma by targeting ARID2. Zhang L, etal., Int J Oncol. 2016 Jun;48(6):2425-34. doi: 10.3892/ijo.2016.3465. Epub 2016 Mar 30.
102. Role of miR-155 in the regulation of MMP-16 expression in intervertebral disc degeneration. Zhang WL, etal., J Orthop Res. 2017 Jun;35(6):1323-1334. doi: 10.1002/jor.23313. Epub 2017 Apr 24.
103. MicroRNA-155 expression as a prognostic factor in patients with gallbladder carcinoma after surgical resection. Zhang XL, etal., Int J Clin Exp Med. 2015 Nov 15;8(11):21241-6. eCollection 2015.
104. Activation of PD-1 Protects Intestinal Immune Defense Through IL-10/miR-155 Pathway After Intestinal Ischemia Reperfusion. Zhang XY, etal., Dig Dis Sci. 2018 Dec;63(12):3307-3316. doi: 10.1007/s10620-018-5282-2. Epub 2018 Sep 12.
105. MicroRNA-155 modulates bile duct inflammation by targeting the suppressor of cytokine signaling 1 in biliary atresia. Zhao R, etal., Pediatr Res. 2017 Dec;82(6):1007-1016. doi: 10.1038/pr.2017.87. Epub 2017 Sep 6.
106. Inflammation-Related MicroRNAs Are Associated with Plaque Stability Calculated by IVUS in Coronary Heart Disease Patients. Zhu GF, etal., J Interv Cardiol. 2019 Dec 1;2019:9723129. doi: 10.1155/2019/9723129. eCollection 2019.
107. Hyperlipidemia-Induced MicroRNA-155-5p Improves β-Cell Function by Targeting Mafb. Zhu M, etal., Diabetes. 2017 Dec;66(12):3072-3084. doi: 10.2337/db17-0313. Epub 2017 Sep 29.
Additional References at PubMed
PMID:15057822   PMID:16381832   PMID:18723672   PMID:18762567   PMID:20548288   PMID:20660734   PMID:21247879   PMID:22517757   PMID:23329697   PMID:23870834   PMID:24391219   PMID:25142507  
PMID:25488154   PMID:25929727   PMID:26349986   PMID:26782583   PMID:26823753   PMID:27999792   PMID:28006785   PMID:28025572   PMID:28719898   PMID:29191771   PMID:29330743   PMID:29852820  
PMID:29990505   PMID:30006293   PMID:30399324   PMID:30402830   PMID:30468491   PMID:30794866   PMID:30951948   PMID:31016687   PMID:31144434   PMID:31337984   PMID:31456514   PMID:31657855  
PMID:31889022   PMID:31922242   PMID:31994915   PMID:32096190   PMID:32337959   PMID:32345535   PMID:32412861   PMID:32587662   PMID:32901848   PMID:33159675   PMID:33613526   PMID:33877664  
PMID:34673407   PMID:34812475   PMID:34904852   PMID:35664920   PMID:35715546   PMID:35997271   PMID:36069070   PMID:36206922   PMID:37219532   PMID:37437797   PMID:37667918   PMID:37954484  
PMID:38240225   PMID:38926979  


Genomics

Comparative Map Data
Mir155
(Rattus norvegicus - Norway rat)
Rat AssemblyChrPosition (strand)SourceGenome Browsers
JBrowseNCBIUCSCEnsembl
GRCr81137,261,114 - 37,261,178 (+)NCBIGRCr8
mRatBN7.21123,774,654 - 23,774,718 (+)NCBImRatBN7.2mRatBN7.2
mRatBN7.2 Ensembl1123,774,654 - 23,774,718 (+)EnsemblmRatBN7.2 Ensembl
UTH_Rnor_SHR_Utx1132,481,023 - 32,481,087 (+)NCBIRnor_SHRUTH_Rnor_SHR_Utx
UTH_Rnor_SHRSP_BbbUtx_1.01125,181,422 - 25,181,486 (+)NCBIRnor_SHRSPUTH_Rnor_SHRSP_BbbUtx_1.0
UTH_Rnor_WKY_Bbb_1.01124,370,128 - 24,370,192 (+)NCBIRnor_WKYUTH_Rnor_WKY_Bbb_1.0
Rnor_6.01124,176,603 - 24,176,667 (+)NCBIRnor6.0Rnor_6.0rn6Rnor6.0
Rnor_6.0 Ensembl1124,176,603 - 24,176,667 (+)EnsemblRnor6.0rn6Rnor6.0
Celera1123,614,233 - 23,614,297 (+)NCBICelera
Cytogenetic Map11q11NCBI
MIR155
(Homo sapiens - human)
Human AssemblyChrPosition (strand)SourceGenome Browsers
JBrowseNCBIUCSCEnsembl
GRCh382125,573,980 - 25,574,044 (+)NCBIGRCh38GRCh38hg38GRCh38
GRCh38.p14 Ensembl2125,573,980 - 25,574,044 (+)EnsemblGRCh38hg38GRCh38
GRCh372126,946,292 - 26,946,356 (+)NCBIGRCh37GRCh37hg19GRCh37
Celera2112,129,700 - 12,129,764 (+)NCBICelera
Cytogenetic Map21q21.3NCBI
HuRef2112,349,435 - 12,349,499 (+)NCBIHuRef
CHM1_12126,506,960 - 26,507,024 (+)NCBICHM1_1
T2T-CHM13v2.02123,931,556 - 23,931,620 (+)NCBIT2T-CHM13v2.0
Mir155
(Mus musculus - house mouse)
Mouse AssemblyChrPosition (strand)SourceGenome Browsers
JBrowseNCBIUCSCEnsembl
GRCm391684,511,028 - 84,511,092 (+)NCBIGRCm39GRCm39mm39
GRCm39 Ensembl1684,511,028 - 84,511,092 (+)EnsemblGRCm39 Ensembl
GRCm381684,714,140 - 84,714,204 (+)NCBIGRCm38GRCm38mm10GRCm38
GRCm38.p6 Ensembl1684,714,140 - 84,714,204 (+)EnsemblGRCm38mm10GRCm38
MGSCv371684,714,385 - 84,714,449 (+)NCBIGRCm37MGSCv37mm9NCBIm37
Celera1684,918,138 - 84,918,202 (+)NCBICelera
Cytogenetic Map16C3.3NCBI
cM Map1646.92NCBI
MIR155
(Canis lupus familiaris - dog)
Dog AssemblyChrPosition (strand)SourceGenome Browsers
JBrowseNCBIUCSCEnsembl
CanFam3.13121,078,768 - 21,078,828 (+)NCBICanFam3.1CanFam3.1canFam3CanFam3.1
CanFam3.1 Ensembl3121,078,758 - 21,078,833 (+)EnsemblCanFam3.1canFam3CanFam3.1
Dog10K_Boxer_Tasha3121,138,038 - 21,138,098 (+)NCBIDog10K_Boxer_Tasha
ROS_Cfam_1.03121,132,843 - 21,132,903 (+)NCBIROS_Cfam_1.0
UMICH_Zoey_3.13121,151,558 - 21,151,618 (+)NCBIUMICH_Zoey_3.1
UNSW_CanFamBas_1.03121,152,631 - 21,152,691 (+)NCBIUNSW_CanFamBas_1.0
UU_Cfam_GSD_1.03121,627,607 - 21,627,667 (+)NCBIUU_Cfam_GSD_1.0
MIR155
(Sus scrofa - pig)
Pig AssemblyChrPosition (strand)SourceGenome Browsers
JBrowseNCBIUCSCEnsembl
Sscrofa11.1 Ensembl13189,138,822 - 189,138,902 (+)EnsemblSscrofa11.1susScr11Sscrofa11.1
Sscrofa11.113189,138,822 - 189,138,902 (+)NCBISscrofa11.1Sscrofa11.1susScr11Sscrofa11.1
Sscrofa10.213199,063,344 - 199,063,424 (-)NCBISscrofa10.2Sscrofa10.2susScr3

miRNA Target Status

Predicted Targets
Summary Value
Count of predictions:799
Count of gene targets:735
Count of transcripts:799
Interacting mature miRNAs:rno-miR-155-3p, rno-miR-155-5p
Prediction methods:Rnahybrid
Result types:miRGate_prediction

The detailed report is available here: Full Report CSV TAB Printer

miRNA Target Status data imported from miRGate (http://mirgate.bioinfo.cnio.es/).
For more information about miRGate, see PMID:25858286 or access the full paper here.


QTLs in Region (mRatBN7.2)
The following QTLs overlap with this region.    Full Report CSV TAB Printer Gviewer
RGD IDSymbolNameLODP ValueTraitSub TraitChrStartStopSpecies
1300147Bp187Blood pressure QTL 1873.67arterial blood pressure trait (VT:2000000)blood pressure time series experimental set point of the baroreceptor response (CMO:0002593)11169446234Rat
724554Iddm17Insulin dependent diabetes mellitus QTL 170.001blood glucose amount (VT:0000188)blood glucose level (CMO:0000046)111897620886241447Rat
1598842Glom10Glomerulus QTL 103.4kidney glomerulus morphology trait (VT:0005325)index of glomerular damage (CMO:0001135)11135331169Rat
8694376Bw156Body weight QTL 1562.250.001body lean mass (VT:0010483)lean tissue morphological measurement (CMO:0002184)112328045668280456Rat
10755497Bp388Blood pressure QTL 3882.76arterial blood pressure trait (VT:2000000)systolic blood pressure (CMO:0000004)111945620576331918Rat
724517Uae18Urinary albumin excretion QTL 183.7urine albumin amount (VT:0002871)urine albumin excretion rate (CMO:0000757)111647204744285911Rat
2290451Scl58Serum cholesterol level QTL 583.48blood cholesterol amount (VT:0000180)plasma total cholesterol level (CMO:0000585)111283104625121472Rat
10058952Gmadr6Adrenal mass QTL 62.290.0072adrenal gland mass (VT:0010420)both adrenal glands wet weight to body weight ratio (CMO:0002411)112295940367959403Rat
1600394Edcs1Endometrial carcinoma susceptibility QTL12.90.04uterus morphology trait (VT:0001120)percentage of study population developing endometrioid carcinoma during a period of time (CMO:0001759)111897620824697116Rat
1558659Tescar1Testicular tumor resistance QTL 13.9testis integrity trait (VT:0010572)percentage of study population developing testis tumors during a period of time (CMO:0001261)11104193166113562Rat
9589032Epfw10Epididymal fat weight QTL 109.290.001epididymal fat pad mass (VT:0010421)epididymal fat pad weight to body weight ratio (CMO:0000658)112328045668280456Rat
9590313Scort20Serum corticosterone level QTL 206.510.001blood corticosterone amount (VT:0005345)plasma corticosterone level (CMO:0001173)112328045668280456Rat
8694424Bw162Body weight QTL 1623.80.001body lean mass (VT:0010483)lean tissue morphological measurement (CMO:0002184)112328045668280456Rat
1641927Alcrsp10Alcohol response QTL 10alcohol metabolism trait (VT:0015089)blood ethanol level (CMO:0000535)11843667453436674Rat


Expression

RNA-SEQ Expression

alimentary part of gastrointestinal system
circulatory system
ectoderm
endocrine system
endoderm
exocrine system
hemolymphoid system
hepatobiliary system
integumental system
mesenchyme
mesoderm
nervous system
renal system
reproductive system
respiratory system
7 14 22 28 27 6 19 6 6 68 46 9 9 26 21

Sequence

Nucleotide Sequences
RefSeq Transcripts NR_106710 (Get FASTA)   NCBI Sequence Viewer   Search GEO for Microarray Profiles
GenBank Nucleotide JAXUCZ010000011 (Get FASTA)   NCBI Sequence Viewer   Search GEO for Microarray Profiles

Ensembl Acc Id: ENSRNOT00000073576
Type: CODING
Position:
Rat AssemblyChrPosition (strand)Source
mRatBN7.2 Ensembl1123,774,654 - 23,774,718 (+)Ensembl
Rnor_6.0 Ensembl1124,176,603 - 24,176,667 (+)Ensembl
RefSeq Acc Id: NR_106710
RefSeq Status: PROVISIONAL
Type: NON-CODING
Position:
Rat AssemblyChrPosition (strand)Source
GRCr81137,261,114 - 37,261,178 (+)NCBI
mRatBN7.21123,774,654 - 23,774,718 (+)NCBI
Rnor_6.01124,176,603 - 24,176,667 (+)NCBI
Celera1123,614,233 - 23,614,297 (+)NCBI
Sequence:
Transcriptome

eQTL   View at Phenogen
WGCNA   View at Phenogen
Tissue/Strain Expression   View at Phenogen


Additional Information

Database Acc Id Source(s)
AGR Gene RGD:7489038 AgrOrtholog
BioCyc Gene G2FUF-22086 BioCyc
Ensembl Genes ENSRNOG00000050840 Ensembl
miRBase MI0025509 ENTREZGENE
NCBI Gene Mir155 ENTREZGENE
PhenoGen Mir155 PhenoGen
RatGTEx ENSRNOG00000050840 RatGTEx
RNAcentral URS0000021B51 RNACentral
  URS00003C3944 RNACentral
  URS0000723DBB RNACentral


Nomenclature History
Date Current Symbol Current Name Previous Symbol Previous Name Description Reference Status
2015-04-09 Mir155  microRNA 155  Mir155  microRNA mir-155  Name updated 61478 APPROVED
2013-12-10 Mir155  microRNA mir-155      Symbol and Name status set to provisional 70820 PROVISIONAL