Send us a Message



Submit Data |  Help |  Video Tutorials |  News |  Publications |  Download |  REST API |  Citing RGD |  Contact   

MAMMALIAN PHENOTYPE - ANNOTATIONS

The Mouse Adult Gross Anatomy Ontology and Mammalian Phenotype Ontology are downloaded weekly from the Mouse Genome Informatics databases at Jackson Laboratories (ftp://ftp.informatics.jax.org/pub/reports/index.html). For more information about these ontologies, see the MGI Publications Page at http://www.informatics.jax.org/mgihome/other/publications.shtml.

Term:abnormal cerebrospinal fluid physiology
go back to main search page
Accession:MP:0021024 term browser browse the term
Definition:any functional anomaly of the fluid that the occupies the subarachnoid space and the ventricular system around and inside the brain and spinal cord and/or its suspended elements



show annotations for term's descendants           Sort by:
abnormal cerebrospinal fluid flow term browser
Symbol Object Name Evidence Notes Source PubMed Reference(s) RGD Reference(s) Position
G Ccdc39 coiled-coil domain 39 molecular ruler complex subunit IMP RGD PMID:31771992 RGD:150521527 NCBI chr 2:116,665,651...116,703,354
Ensembl chr 2:116,665,261...116,703,350
JBrowse link
G Ccdc39em1Jgn coiled-coil domain containing 39; CRISPR/Cas9 induced mutant 1, Jgn IMP RGD PMID:31771992 RGD:150521527
G Tmem67 transmembrane protein 67 IAGP RGD PMID:30705305 RGD:14995942 NCBI chr 5:25,536,458...25,589,378
Ensembl chr 5:25,536,458...25,589,334
JBrowse link
G Tmem67wpk transmembrane protein 67; wpk mutant IAGP RGD PMID:30705305 RGD:14995942

Term paths to the root
Path 1
Term Annotations click to browse term
  mammalian phenotype 5402
    nervous system phenotype 369
      abnormal nervous system physiology 210
        abnormal cerebrospinal fluid physiology 6
          abnormal cerebrospinal fluid amyloid beta 40 isoform level + 0
          abnormal cerebrospinal fluid amyloid beta 42 isoform level + 0
          abnormal cerebrospinal fluid flow 6
          abnormal cerebrospinal fluid production + 0
paths to the root