The Chemical Entities of Biological Interest (ChEBI) ontology is downloaded weekly from EMBL-EBI at http://www.ebi.ac.uk/chebi/. The data is made available under the Creative Commons License (CC BY 3.0, http://creativecommons.org/licenses/by/3.0/). For more information see: Degtyarenko et al. (2008) ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res. 36, D344–D350.
The oxidised form of nicotinamide adenine dinucleotide found in all living cells. In metabolism, NAD(+) is involved in redox reactions, carrying electrons from one reaction to another.
NAD promotes the reaction [AKR1A1 protein affects the chemical synthesis of benzo(a)pyrene-7,8-dione]; NAD promotes the reaction [AKR1A1 protein affects the metabolism of and results in increased activity of benzo(a)pyrene 7,8-dihydrodiol]
[AKR1C1 protein co-treated with NAD] results in increased oxidation of acenaphthene-1-ol; dichloro(4-cymene)ruthenium(II) analog inhibits the reaction [[AKR1C1 protein co-treated with NAD] results in increased oxidation of acenaphthene-1-ol]; dichloro(4-cymene)ruthenium(II) inhibits the reaction [[AKR1C1 protein co-treated with NAD] results in increased oxidation of acenaphthene-1-ol]; Ruthenium Compounds analog inhibits the reaction [[AKR1C1 protein co-treated with NAD] results in increased oxidation of acenaphthene-1-ol]
[AKR1C2 protein co-treated with NAD] results in increased oxidation of acenaphthene-1-ol; dichloro(4-cymene)ruthenium(II) analog inhibits the reaction [[AKR1C2 protein co-treated with NAD] results in increased oxidation of acenaphthene-1-ol]; dichloro(4-cymene)ruthenium(II) inhibits the reaction [[AKR1C2 protein co-treated with NAD] results in increased oxidation of acenaphthene-1-ol]; Ruthenium Compounds analog inhibits the reaction [[AKR1C2 protein co-treated with NAD] results in increased oxidation of acenaphthene-1-ol]
[AKR1C3 protein co-treated with NAD] results in increased oxidation of acenaphthene-1-ol; dichloro(4-cymene)ruthenium(II) analog inhibits the reaction [[AKR1C3 protein co-treated with NAD] results in increased oxidation of acenaphthene-1-ol]; dichloro(4-cymene)ruthenium(II) inhibits the reaction [[AKR1C3 protein co-treated with NAD] results in increased oxidation of acenaphthene-1-ol]; Ruthenium Compounds analog inhibits the reaction [[AKR1C3 protein co-treated with NAD] results in increased oxidation of acenaphthene-1-ol]
6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide inhibits the reaction [NAD inhibits the reaction [Oleic Acid results in decreased phosphorylation of AKT1 protein]]; [N-(oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide hydrochloride co-treated with NAD] inhibits the reaction [Oleic Acid results in decreased phosphorylation of AKT1 protein]; NAD inhibits the reaction [Oleic Acid results in decreased phosphorylation of AKT1 protein]
[ALDH1A1 protein binds to NAD] which results in increased oxidation of propionaldehyde; [ALDH1A1 protein co-treated with NAD] results in increased oxidation of aldophosphamide; [ALDH1A1 protein co-treated with NAD] results in increased oxidation of propionaldehyde; [ALDH1A1 protein co-treated with NAD] results in increased oxidation of Retinaldehyde; [NAD co-treated with propionaldehyde] inhibits the reaction [Acrolein results in decreased activity of ALDH1A1 protein]; ALDH1A1 protein binds to and results in increased reduction of NAD; NAD binds to and results in increased activity of ALDH1A1 protein; NAD inhibits the reaction [Acrolein binds to and results in decreased activity of ALDH1A1 protein] NAD results in increased activity of ALDH1A1 protein
[ALDH1B1 protein co-treated with NAD] results in increased metabolism of Acetaldehyde; [ALDH1B1 protein co-treated with NAD] results in increased metabolism of propionaldehyde
[ALDH2 protein co-treated with NAD] results in increased oxidation of Retinaldehyde; NAD inhibits the reaction [[Ethanol co-treated with Lead] results in decreased expression of and results in decreased activity of ALDH2 protein]; NAD inhibits the reaction [Acrolein binds to and results in decreased activity of ALDH2 protein]; NAD inhibits the reaction [Ethanol results in decreased expression of and results in decreased activity of ALDH2 protein] ALDH2 gene polymorphism affects the abundance of NAD; ALDH2 protein affects the abundance of NAD ALDH2 protein binds to NAD Magnesium affects the reaction [NAD binds to ALDH2 protein]
[ALDH3A1 protein co-treated with NAD] results in increased oxidation of aldophosphamide; [ALDH3A1 protein co-treated with NAD] results in increased oxidation of benzaldehyde NAD results in increased activity of ALDH3A1 protein
NAD inhibits the reaction [Antimycin A results in increased cleavage of CASP3 protein]; NAD inhibits the reaction [Doxorubicin results in increased activity of CASP3 protein]; NAD inhibits the reaction [Hydrogen Peroxide results in increased cleavage of CASP3 protein]
CAT protein inhibits the reaction [[2-phenylphenol metabolite co-treated with NAD co-treated with Copper] results in increased mutagenesis of HRAS gene]; CAT protein inhibits the reaction [[2-phenylphenol metabolite co-treated with NAD co-treated with Copper] results in increased mutagenesis of TP53 gene]
NAD inhibits the reaction [Glucose results in increased expression of CDKN1A protein]; SIRT1 protein promotes the reaction [NAD inhibits the reaction [Glucose results in increased expression of CDKN1A protein]]
NAD inhibits the reaction [Glucose results in increased expression of CDKN1B protein]; SIRT1 protein promotes the reaction [NAD inhibits the reaction [Glucose results in increased expression of CDKN1B protein]]
CHRNA9 protein promotes the reaction [NAD inhibits the reaction [3'-O-(4-benzoyl)benzoyladenosine 5'-triphosphate results in increased secretion of IL1B protein]]
[MTARC1 protein co-treated with CYB5B protein co-treated with CYB5R3 protein co-treated with NAD] results in increased reduction of sulfamethoxazole hydroxylamine; [MTARC2 protein co-treated with CYB5B protein co-treated with CYB5R3 protein co-treated with NAD] results in increased reduction of sulfamethoxazole hydroxylamine
CYB5R3 protein binds to NAD [MTARC1 protein co-treated with CYB5B protein co-treated with CYB5R3 protein co-treated with NAD] results in increased reduction of sulfamethoxazole hydroxylamine; [MTARC2 protein co-treated with CYB5B protein co-treated with CYB5R3 protein co-treated with NAD] results in increased reduction of sulfamethoxazole hydroxylamine
1,2-naphthoquinone inhibits the reaction [[[DCXR protein co-treated with NAD] results in increased reduction of Diacetyl] which results in increased chemical synthesis of Acetoin]; 1,4-naphthoquinone inhibits the reaction [[[DCXR protein co-treated with NAD] results in increased reduction of Diacetyl] which results in increased chemical synthesis of Acetoin]; 9,10-phenanthrenequinone inhibits the reaction [[[DCXR protein co-treated with NAD] results in increased reduction of Diacetyl] which results in increased chemical synthesis of Acetoin]; [[DCXR protein co-treated with NAD] results in increased reduction of Diacetyl] which results in increased chemical synthesis of Acetoin; [DCXR protein co-treated with NAD] results in increased chemical synthesis of Acetoin; [DCXR protein co-treated with NAD] results in increased reduction of Diacetyl; [DCXR protein co-treated with NAD] results in increased reduction of Xylulose; Vitamin K 3 inhibits the reaction [[[DCXR protein co-treated with NAD] results in increased reduction of Diacetyl] which results in increased chemical synthesis of Acetoin]
[epigallocatechin gallate results in decreased activity of ENOX2 protein] which results in increased abundance of NAD; [phenoxodiol results in decreased activity of ENOX2 protein] which results in increased abundance of NAD
ERCC6 gene mutant form promotes the reaction [N-(oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide hydrochloride results in increased abundance of NAD]; ERCC6 inhibits the reaction [NAD results in increased activity of PARP1 protein] ERCC6 gene mutant form results in increased metabolism of NAD NAD results in increased ADP-ribosylation of ERCC6 protein ERCC6 gene mutant form results in decreased abundance of NAD nicotinamide-beta-riboside inhibits the reaction [ERCC6 gene mutant form results in decreased abundance of NAD]
[GAPDH protein co-treated with NAD co-treated with Glyceraldehyde 3-Phosphate co-treated with Glutathione] results in increased reduction of sodium arsenite analog; Adenosine Diphosphate inhibits the reaction [[GAPDH protein co-treated with NAD co-treated with Glyceraldehyde 3-Phosphate co-treated with Glutathione] results in increased reduction of sodium arsenite analog]; Adenosine Triphosphate inhibits the reaction [[GAPDH protein co-treated with NAD co-treated with Glyceraldehyde 3-Phosphate co-treated with Glutathione] results in increased reduction of sodium arsenite analog]; NAD analog inhibits the reaction [[GAPDH protein co-treated with NAD co-treated with Glyceraldehyde 3-Phosphate co-treated with Glutathione] results in increased reduction of sodium arsenite analog]; NADP inhibits the reaction [[GAPDH protein co-treated with NAD co-treated with Glyceraldehyde 3-Phosphate co-treated with Glutathione] results in increased reduction of sodium arsenite analog] [GAPDH protein co-treated with 3-phosphoglycerate co-treated with NAD] results in increased chemical synthesis of sodium arsenite; [GAPDH protein co-treated with 3-phosphoglycerate co-treated with NAD] results in increased reduction of sodium arsenate analog; [GAPDH protein co-treated with fructose-1,6-diphosphate co-treated with NAD] results in increased chemical synthesis of sodium arsenite; [GAPDH protein co-treated with fructose-1,6-diphosphate co-treated with NAD] results in increased reduction of sodium arsenate analog; heptelidic acid inhibits the reaction [[GAPDH protein co-treated with 3-phosphoglycerate co-treated with NAD] results in increased reduction of sodium arsenate analog]; heptelidic acid inhibits the reaction [[GAPDH protein co-treated with fructose-1,6-diphosphate co-treated with NAD] results in increased reduction of sodium arsenate analog]
NAD inhibits the reaction [Glucose results in increased expression of GLB1 protein]; SIRT1 protein promotes the reaction [NAD inhibits the reaction [Glucose results in increased expression of GLB1 protein]]
GSK3B protein mutant form results in increased abundance of NAD metabolite 6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide inhibits the reaction [NAD inhibits the reaction [Oleic Acid results in decreased phosphorylation of GSK3B protein]]; [N-(oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide hydrochloride co-treated with NAD] inhibits the reaction [Oleic Acid results in decreased phosphorylation of GSK3B protein]; NAD inhibits the reaction [Oleic Acid results in decreased phosphorylation of GSK3B protein]
[Celecoxib co-treated with NAD] binds to HPGD protein; [Diclofenac co-treated with NAD] binds to HPGD protein; [Dinoprostone co-treated with NAD] binds to HPGD protein; [Fenoprofen co-treated with NAD] binds to HPGD protein; [Indomethacin co-treated with NAD] binds to HPGD protein; [Ketoprofen co-treated with NAD] binds to HPGD protein; [Niflumic Acid co-treated with NAD] binds to HPGD protein; [pioglitazone co-treated with NAD] binds to HPGD protein; [rosiglitazone co-treated with NAD] binds to HPGD protein; NAD binds to and results in increased activity of HPGD protein
[2-phenylphenol metabolite co-treated with NAD co-treated with Copper] results in increased mutagenesis of HRAS gene; bathocuproine inhibits the reaction [[2-phenylphenol metabolite co-treated with NAD co-treated with Copper] results in increased mutagenesis of HRAS gene]; CAT protein inhibits the reaction [[2-phenylphenol metabolite co-treated with NAD co-treated with Copper] results in increased mutagenesis of HRAS gene]
[Androstane-3,17-diol co-treated with NAD] binds to HSD11B1 protein; [Disulfiram co-treated with NAD] binds to HSD11B1 protein; [Estradiol co-treated with NAD] binds to HSD11B1 protein; [Quercetin co-treated with NAD] binds to HSD11B1 protein; [Testosterone co-treated with NAD] binds to HSD11B1 protein
[20-hydroxycholesterol co-treated with NAD] binds to HSD17B10 protein; [Androstane-3,17-diol co-treated with NAD] binds to HSD17B10 protein; [cholest-5-en-3 beta,7 alpha-diol co-treated with NAD] binds to HSD17B10 protein; [Cholestanol co-treated with NAD] binds to HSD17B10 protein; [Pregnanolone co-treated with NAD] binds to HSD17B10 protein; [Progesterone co-treated with NAD] binds to HSD17B10 protein; NAD binds to and results in increased activity of HSD17B10 protein
IDH2 protein mutant form results in increased abundance of NAD; IDH2 protein mutant form results in increased abundance of NAD metabolite Triazines inhibits the reaction [IDH2 protein mutant form results in increased abundance of NAD metabolite]; Triazines inhibits the reaction [IDH2 protein mutant form results in increased abundance of NAD]
NAD inhibits the reaction [[Medroxyprogesterone Acetate co-treated with Cyclic AMP] results in increased expression of IGFBP1 mRNA] NAD results in increased expression of IGFBP1 mRNA
2-chloro-N6-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphate inhibits the reaction [NAD inhibits the reaction [3'-O-(4-benzoyl)benzoyladenosine 5'-triphosphate results in increased secretion of IL1B protein]]; 6-(bromomethylene)tetrahydro-3-(1-naphthaleneyl)-2H-pyran-2-one inhibits the reaction [NAD inhibits the reaction [3'-O-(4-benzoyl)benzoyladenosine 5'-triphosphate results in increased secretion of IL1B protein]]; [NAD results in increased secretion of Biological Factors] inhibits the reaction [3'-O-(4-benzoyl)benzoyladenosine 5'-triphosphate results in increased secretion of IL1B protein]; arachidonyltrifluoromethane inhibits the reaction [NAD inhibits the reaction [3'-O-(4-benzoyl)benzoyladenosine 5'-triphosphate results in increased secretion of IL1B protein]]; Bungarotoxins inhibits the reaction [NAD inhibits the reaction [3'-O-(4-benzoyl)benzoyladenosine 5'-triphosphate results in increased secretion of IL1B protein]]; CHRNA9 protein promotes the reaction [NAD inhibits the reaction [3'-O-(4-benzoyl)benzoyladenosine 5'-triphosphate results in increased secretion of IL1B protein]]; conotoxin alpha-RgIA, Conus regius analog inhibits the reaction [[NAD results in increased secretion of Biological Factors] inhibits the reaction [3'-O-(4-benzoyl)benzoyladenosine 5'-triphosphate results in increased secretion of IL1B protein]]; conotoxin alpha-RgIA, Conus regius analog inhibits the reaction [NAD inhibits the reaction [3'-O-(4-benzoyl)benzoyladenosine 5'-triphosphate results in increased secretion of IL1B protein]]; Mecamylamine inhibits the reaction [NAD inhibits the reaction [3'-O-(4-benzoyl)benzoyladenosine 5'-triphosphate results in increased secretion of IL1B protein]]; NAD inhibits the reaction [3'-O-(4-benzoyl)benzoyladenosine 5'-triphosphate results in increased secretion of IL1B protein]; P2RY1 protein promotes the reaction [NAD inhibits the reaction [3'-O-(4-benzoyl)benzoyladenosine 5'-triphosphate results in increased secretion of IL1B protein]]; P2RY11 protein promotes the reaction [NAD inhibits the reaction [3'-O-(4-benzoyl)benzoyladenosine 5'-triphosphate results in increased secretion of IL1B protein]]; PLA2G6 protein promotes the reaction [NAD inhibits the reaction [3'-O-(4-benzoyl)benzoyladenosine 5'-triphosphate results in increased secretion of IL1B protein]]; Strychnine inhibits the reaction [NAD inhibits the reaction [3'-O-(4-benzoyl)benzoyladenosine 5'-triphosphate results in increased secretion of IL1B protein]]
6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide inhibits the reaction [NAD inhibits the reaction [Oleic Acid results in decreased phosphorylation of INSR protein]]; [N-(oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide hydrochloride co-treated with NAD] inhibits the reaction [Oleic Acid results in decreased phosphorylation of INSR protein]; NAD inhibits the reaction [Oleic Acid results in decreased phosphorylation of INSR protein]
[[MIR34A mRNA binds to NAMPT 3' UTR] which results in decreased expression of NAMPT mRNA] which results in decreased abundance of NAD; [MIR34A mRNA results in decreased abundance of NAD] which results in decreased activity of SIRT1 protein; MIR34A mRNA inhibits the reaction [NAMPT protein results in increased chemical synthesis of NAD]; NAMPT protein affects the reaction [MIR34A mRNA results in decreased abundance of NAD]; Nicotinamide Mononucleotide inhibits the reaction [MIR34A mRNA inhibits the reaction [NAMPT protein results in increased chemical synthesis of NAD]]; Nicotinamide Mononucleotide inhibits the reaction [MIR34A mRNA results in decreased abundance of NAD]; Resveratrol inhibits the reaction [MIR34A mRNA inhibits the reaction [NAMPT protein results in increased chemical synthesis of NAD]]; Resveratrol inhibits the reaction [MIR34A mRNA results in decreased abundance of NAD]
[MTARC1 protein co-treated with CYB5B protein co-treated with CYB5R3 protein co-treated with NAD] results in increased reduction of sulfamethoxazole hydroxylamine; NAD affects the reaction [MTARC1 protein results in increased reduction of trimethyloxamine]
[MTARC2 protein co-treated with CYB5B protein co-treated with CYB5R3 protein co-treated with NAD] results in increased reduction of sulfamethoxazole hydroxylamine
[NADSYN1 protein co-treated with Ammonium Chloride co-treated with nicotinic acid adenine dinucleotide co-treated with Adenosine Triphosphate] results in increased chemical synthesis of NAD
NAMPT protein results in increased chemical synthesis of NAD [[MIR34A mRNA binds to NAMPT 3' UTR] which results in decreased expression of NAMPT mRNA] which results in decreased abundance of NAD; [Acetaminophen results in decreased expression of NAMPT protein] which results in decreased abundance of NAD; [N-(4-(1-benzoylpiperidin-4-yl)butyl)-3-(pyridin-3-yl)acrylamide results in decreased activity of NAMPT protein] which results in decreased abundance of NAD; MIR34A mRNA inhibits the reaction [NAMPT protein results in increased chemical synthesis of NAD]; NAMPT protein affects the reaction [MIR34A mRNA results in decreased abundance of NAD]; Niacinamide inhibits the reaction [[Acetaminophen results in decreased expression of NAMPT protein] which results in decreased abundance of NAD]; Nicotinamide Mononucleotide inhibits the reaction [MIR34A mRNA inhibits the reaction [NAMPT protein results in increased chemical synthesis of NAD]]; Resveratrol inhibits the reaction [MIR34A mRNA inhibits the reaction [NAMPT protein results in increased chemical synthesis of NAD]]
P2RY1 protein promotes the reaction [NAD inhibits the reaction [3'-O-(4-benzoyl)benzoyladenosine 5'-triphosphate results in increased secretion of IL1B protein]]
[Hydrogen Peroxide results in increased activity of PARP1 protein] which results in decreased abundance of NAD; [Methylnitronitrosoguanidine results in increased activity of PARP1 protein] which results in decreased abundance of NAD; benzamide inhibits the reaction [[Hydrogen Peroxide results in increased activity of PARP1 protein] which results in decreased abundance of NAD]; benzamide inhibits the reaction [[Methylnitronitrosoguanidine results in increased activity of PARP1 protein] which results in decreased abundance of NAD]; Hydrolyzable Tannins inhibits the reaction [[Hydrogen Peroxide results in increased activity of PARP1 protein] which results in decreased abundance of NAD]; Hydrolyzable Tannins inhibits the reaction [[Methylnitronitrosoguanidine results in increased activity of PARP1 protein] which results in decreased abundance of NAD] PARP1 protein affects the abundance of NAD [2,5,2',5'-tetrachlorobiphenyl results in increased activity of PARP1 protein] which results in decreased abundance of NAD; [3,4,3',4'-tetrachlorobiphenyl results in increased activity of PARP1 protein] which results in decreased abundance of NAD; [3-aminobenzamide results in decreased activity of PARP1 protein] inhibits the reaction [Tetrachlorodibenzodioxin results in decreased abundance of NAD]; [benzamide results in decreased activity of PARP1 protein] inhibits the reaction [Tetrachlorodibenzodioxin results in decreased abundance of NAD]; [coumarin results in decreased activity of PARP1 protein] inhibits the reaction [Tetrachlorodibenzodioxin results in decreased abundance of NAD]; [NAD co-treated with Oleic Acid] results in increased activity of PARP1 protein; [PARP1 protein co-treated with NAD] results in increased ADP-ribosylation of NR1H3 protein; ERCC6 inhibits the reaction [NAD results in increased activity of PARP1 protein]; Hydrogen Peroxide affects the reaction [PARP1 protein mutant form affects the abundance of NAD]; N-(oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide hydrochloride inhibits the reaction [[NAD co-treated with Oleic Acid] results in increased activity of PARP1 protein]; PARP1 protein affects the reaction [Hydrogen Peroxide results in decreased abundance of NAD]; PARP1 protein promotes the reaction [Hydrogen Peroxide results in decreased abundance of NAD]; veliparib inhibits the reaction [Hydrogen Peroxide affects the reaction [PARP1 protein mutant form affects the abundance of NAD]]; veliparib inhibits the reaction [PARP1 protein mutant form affects the abundance of NAD]; XRCC1 protein affects the reaction [PARP1 protein affects the reaction [Hydrogen Peroxide results in decreased abundance of NAD]] 5-chloro-2-(3-(4-phenyl-3,6-dihydro-1(2H)-pyridinyl)propyl)-4(3H)-quinazolinone inhibits the reaction [PARP1 protein results in decreased abundance of NAD]
PLA2G6 protein promotes the reaction [NAD inhibits the reaction [3'-O-(4-benzoyl)benzoyladenosine 5'-triphosphate results in increased secretion of IL1B protein]]
6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide inhibits the reaction [NAD promotes the reaction [Oleic Acid results in decreased activity of SIRT1 protein]]; [[Resveratrol results in increased activity of and results in increased phosphorylation of SIRT1 protein] which co-treated with NAD] results in decreased acetylation of TP53 protein; [Resveratrol results in increased abundance of NAD] which results in increased expression of SIRT1 protein; NAD promotes the reaction [Oleic Acid results in decreased activity of SIRT1 protein] SIRT1 protein results in decreased abundance of NAD NAD inhibits the reaction [Glucose results in decreased expression of SIRT1 protein]; Niacinamide inhibits the reaction [SIRT1 protein results in decreased abundance of NAD]; SIRT1 protein promotes the reaction [NAD inhibits the reaction [Glucose results in increased expression of CDKN1A protein]]; SIRT1 protein promotes the reaction [NAD inhibits the reaction [Glucose results in increased expression of CDKN1B protein]]; SIRT1 protein promotes the reaction [NAD inhibits the reaction [Glucose results in increased expression of GLB1 protein]] [MIR34A mRNA results in decreased abundance of NAD] which results in decreased activity of SIRT1 protein NAD results in increased activity of SIRT1 protein SIRT1 protein results in increased susceptibility to NAD
[2-phenylphenol metabolite co-treated with NAD co-treated with Copper] results in increased mutagenesis of TP53 gene; [[Resveratrol results in increased activity of and results in increased phosphorylation of SIRT1 protein] which co-treated with NAD] results in decreased acetylation of TP53 protein; bathocuproine inhibits the reaction [[2-phenylphenol metabolite co-treated with NAD co-treated with Copper] results in increased mutagenesis of TP53 gene]; CAT protein inhibits the reaction [[2-phenylphenol metabolite co-treated with NAD co-treated with Copper] results in increased mutagenesis of TP53 gene] NAD results in decreased expression of TP53 protein NAD promotes the reaction [Acetaminophen results in decreased expression of TRP53 protein]
ethylenediamine inhibits the reaction [[TYR protein results in increased oxidation of caffeic acid phenethyl ester] which results in increased oxidation of NAD]; Glutathione inhibits the reaction [[TYR protein results in increased oxidation of caffeic acid phenethyl ester] which results in increased oxidation of NAD]
[thymidine 5'-diphosphate co-treated with NAD] binds to UXS1 protein; [Uridine Diphosphate Galactose co-treated with NAD] binds to UXS1 protein; [Uridine Diphosphate Glucose co-treated with NAD] binds to UXS1 protein; [Uridine Diphosphate Glucuronic Acid co-treated with NAD] binds to UXS1 protein
XRCC1 gene mutant form results in decreased reduction of NAD [XRCC1 protein affects the susceptibility to Camptothecin] which affects the abundance of NAD; olaparib affects the reaction [[XRCC1 protein affects the susceptibility to Camptothecin] which affects the abundance of NAD]; veliparib affects the reaction [[XRCC1 protein affects the susceptibility to Camptothecin] which affects the abundance of NAD]; XRCC1 protein affects the reaction [Hydrogen Peroxide results in decreased abundance of NAD]; XRCC1 protein affects the reaction [PARP1 protein affects the reaction [Hydrogen Peroxide results in decreased abundance of NAD]]